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Abstract—Customized text-to-video generation aims to gener-
ate text-guided videos with user-given subjects, which has gained
increasing attention. However, existing works are primarily lim-
ited to single-subject oriented text-to-video generation, leaving the
more challenging problem of customized multi-subject generation
unexplored. In this paper, we fill this gap and propose a novel
VideoDreamer framework, which can generate temporally consis-
tent text-guided videos that faithfully preserve the visual features
of the given multiple subjects. Specifically, VideoDreamer adopts
the pretrained Stable Diffusion with temporal modules as its
base video generator, taking the power of the text-to-image
model to generate diversified content. The video generator
is further customized for multi-subjects, which leverages the
proposed Disen-Mix Finetuning and Human-in-the-Loop Re-
finetuning strategy, to tackle the attribute binding problem of
multi-subject generation. Additionally, we present a disentangled
motion customization strategy to finetune the temporal modules
so that we can generate videos with both customized subjects and
motions. To evaluate the performance of customized multi-subject
text-to-video generation, we introduce the MultiStudioBench
benchmark. Extensive experiments demonstrate the remarkable
ability of VideoDreamer to generate videos with new content
such as new events and backgrounds, tailored to the customized
multiple subjects.

Index Terms—text-to-video, multi-subject, customization, dif-
fusion model, foundation model finetuning

I. INTRODUCTION

Pretrained on large-scale multimodal datasets [1]–[4], text-
to-video models [3], [5]–[10] can generate temporal-coherent
and photo-realistic videos following the given textual prompts.
However, relying solely on textual prompts poses a challenge
in precisely controlling the visual details of the generated
videos. For instance, when a user desires to create a video
of “their favorite pet dog surfing on the ocean”, it be-
comes difficult to determine a textual prompt that indicates
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the inclusion of a visually similar dog to their own pet.
Consequently, customized text-to-video generation [6], [7],
where a video that reflects user-specific concepts is expected
to be generated with textual prompts, has received increased
attention recently. However, existing customized text-to-video
generation works [7], [11] primarily focus on a single subject,
limiting their application to broader scenarios, where a user
may want to generate a video of their pet dog and cat playing
together, which involves multiple subjects.

In this paper, we take a further step and investigate the
more challenging task of customized multi-subject text-to-
video generation. Given multiple user-defined subjects and
few images for each subject, customized multi-subject text-
to-video generation aims to generate videos that show the
subjects and simultaneously conform to the textual prompts.
As shown in Figure 1, in customized multi-subject text-to-
video generation, the user can create new actions of the
multiple subjects, e.g., “surfing”, and a new background for
the videos, e.g., “in the sea”. Despite the expected fascinating
results, customized multi-subject text-to-video generation still
remains a largely unexplored field. Moreover, generating mul-
tiple subjects often suffers the attribute binding problem (the
visual features of subjects are mixed together and different
subjects look similar), making the task more challenging.

To tackle the problems, we propose the novel Video-
Dreamer framework, which can generate text-guided multi-
subject videos where the visual features of each given subject
are well-preserved. VideoDreamer utilizes the pretrained text-
to-image model, Stable Diffusion, with additional temporal
modules to maintain temporal consistency, as the base video
generator. Then the base generator is customized for multiple
subjects with the proposed finetuning strategy. Particularly, to
tackle the attribute binding problem, we propose a Disen-
Mix finetuning strategy that guides the model to preserve
the visual features of each subject with an auxiliary task to
denoise the mixed images of the given subjects. To alleviate
the influence of the artifacts of the mixed images, we finetune
the mixed images with disentangled embeddings. Moreover,
the Human-in-the-Loop Re-finetuning strategy is proposed
to further enhance VideoDreamer performance. Additionally,
we present a disentangled motion customization strategy to
finetune the temporal modules so that we can generate videos
with both customized subjects and motions. To evaluate the
customized multi-subject text-to-video generation results, we
propose the MultiStudioBench benchmark, which contains
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A S1* dog and a S2* cat are jumping over a river.

A S1* girl and a S2* dog are surfing in the sea. A S1* girl and a S2* dog are skiing down the hill, on the board.

Subject 1: A S1* girl 

Subject 2: A S2* dog 

Subject 1: A S1* dog 

Subject 2: A S2* cat A S1* dog and a S2* cat are dancing on the grass, waving feet. 

Fig. 1. Customized multi-subject text-to-video generation results by VideoDreamer. Given multiple subjects and few images for each subject, our VideoDreamer
can generate videos that contain the given subjects, with new events and background, etc., guided by the text.

various subjects and textual prompts, with comprehensive
metrics to evaluate the generated videos in subject fidelity,
prompt fidelity, temporal consistency, etc. Our contributions
are summarized as follows:

• To the best of our knowledge, this work represents the
first endeavor in the domain of customized multi-subject
text-to-video generation.

• We propose a novel VideoDreamer framework, which
customizes the text-to-video generator for multiple sub-
jects by the proposed Disen-Mix Finetuning and Human-
in-the-Loop Re-finetuning strategy, faithfully preserving
the visual features of each subject.

• We present an effective disentangled motion finetuning
strategy for VideoDreamer to support motion customiza-
tion for the customized multiple subjects.

• We introduce MultiStudioBench, a benchmark tailored
for evaluating customized multi-subject text-to-video
generation models. Extensive experiments on MultiStu-
dioBench demonstrate the remarkable generation capa-
bilities of our proposed VideoDreamer.

II. RELATED WORK

a) Text-to-image diffusion models: Diffusion models
have shown a remarkable ability to learn data distributions,
attracting attention from both academia and industry. Trained
on large-scale text-image pairs, diffusion models [12]–[17]
can generate photo-realistic images based on the given textual
prompts. GLIDE [14] introduces classifier-free guidance to
achieve better text control on images. Dall-E 2 [16] and
Imagen [12] utilize pretrained text models to further improve
generation quality. Stable Diffusion (SD) [15] proposes to
conduct diffusion process in the latent space, gaining speed
and efficiency improvement while still maintaining a high
resolution.

b) Text-to-video generation: Driven by the success of
text-to-image generation, the text-to-video task has received
increasing attention recently. Text-to-video generation aims to
generate temporal-coherent semantic videos that conform to
the given textual prompts. Early works [18]–[21] primarily
focus on simple-domain video generation, such as moving

digits and human pose. Recently, pretrained on the large-
scale video datasets [1]–[3], both diffusion-based models [5]–
[8], [10], [11], [22], [23] and non-diffusion-based models [3],
[24], [25] are developed to generate more realistic and diverse
videos. Despite the progress, the general text-to-video gener-
ation models cannot satisfy the personalized requirement for
user-customized subjects.

c) Text-guided video editing: Text-guided video editing
aims to edit the content of the reference video with textual
prompts [7], [26]–[32]. Note that text-guided video editing
is different from text-to-video generation, where the former
requires an input video while the latter does not. Additionally,
it is hard for text-guided video editing to change the motion
or generate videos with new events.

d) Subject customization: Most subject customization
works are still in the field of image generation. On one hand,
some of the existing methods [33]–[37] require finetuning on
few images of the given subject, such as DreamBooth [33],
so that the subject can be reversed into a special text token.
Consequently, customized generation can be achieved with
the special token. Among the finetuning methods, [33]–[35]
face the attribute binding problem when applied to multiple
subjects. [36] solves the attribute binding problem for multiple
subjects by augmented data but introduces artificial stitches.
[38] aims at a decentralized scenario for multiple subjects.
On the other hand, other works [39]–[44] use additional
datasets to train a module that can map an image to a text
token for customization, making them free of the finetuning
steps. Among the non-finetuning methods, [39]–[41] are for
single-subject customization, while [42], [43] also consider the
multi-subject scenario with attention controls for the attribute
binding problem. However, these non-finetuning methods will
fail to customize the subjects that are out-of-domain of the ad-
ditional datasets, and therefore an effective finetuning strategy
is still necessary. As shown in Fig. 2, we use the non-finetuning
method FastComposer [42] to customize the cartoon girl and
the dog, it will easily fail because the additional datasets it
utilizes only contain real-world humans. The cartoon girl and
dog are out-of-domain concepts for it. Additionally, in text-to-
video generation, [7], [8], [11] apply the image customization
method DreamBooth to video models, and there are some
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other attempts [45]–[47] specifically designed for customized
video generation. However, these methods are still limited to
the single-subject scenario, failing to tackle the multi-subject
video customization problem, whereas the static and dynamic
attributes of multiple subjects are of significance to the visual
big models [48].

VideoDreamerFastComposer

a 𝑆!∗ girl and a 𝑆#∗ dog are surfing in the sea. 

Given Subjects

Fig. 2. Visual comparison, where we use FastComposer and VideoDreamer
to generate 2 images with 2 random seeds with the given prompt.

III. METHOD

The overall VideoDreamer framework is shown in Figure 3,
which contains the Disen-Mix Finetuning stage for multi-
subject customization, the customized video generation stage,
and the motion customization stage. Next, we will introduce
preliminaries about Stable Diffusion, present the base video
generator, and our details about the VideoDreamer framework.

A. Preliminaries

a) Stable Diffusion: Stable Diffusion [15] is a pretrained
text-to-image model on large-scale text-image pairs {(P, x)},
where x is an image and P is the text description of the
image x. To improve efficiency, Stable Diffusion conducts the
forward and backward process in the latent space, with an
encoder E(·) and a decoder D(·). The encoder transforms the
image x into the latent space, z = E(x), and the decoder
reconstructs the image from the latent space with x ≈ D(z),
where z is the latent code. Denoting the latent code of the
image as z0, next, we respectively describe the diffusion
forward, backward, and training process.

In the diffusion forward process, Gaussian noise is added
to the latent code iteratively:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), t = 1, · · · , T, (1)

where T is a large step so that zT is close to a standard
Gaussian noise.

In the backward process (also called the sampling process),
the Stable Diffusion will recover the image latent code z0
from the noise zT step by step. Specifically, the denoising
process relies on a U-Net [49], which we denote as ϵθ,I(·),
to predict the noise at each step. The U-Net is composed of
convolutional and attentional (both self-attention and cross-
attention) blocks. It receives the noisy latent code zt, timestep
t, and the textual feature ET (P ) as input, and predicts the
noise ϵθ,I(zt, t, ET (P )) at timestep t, where ET (·) is a CLIP
text encoder to encode the text prompt P . Then we get a less
noisy latent code zt′ :

zt′ = Sampler(zt, ϵθ,I(zt, t, ET (P )); t′, t), t′ < t, (2)

where Sampler(·) could be DDPM [50], DDIM [51], or
DPMSolver sampler [52], and t′ also relies on the choice of

the sampler, since different samplers require different sam-
pling (backward) steps. The sampling process is conducted
iteratively until we obtain z0, and then we can map the latent
code z0 to the image x with x = D(z0).

To train the U-Net ϵθ,I(·), the following objective is usually
adopted [50], [51]:

min EP,z0,ϵ,t[||ϵ− ϵθ,I(zt, t, ET (P ))||22], (3)

where for a randomly sampled noise ϵ, we add it to the latent
code z0 and obtain the noisy latent zt. What the U-Net ϵθ,I(·)
needs to do is to make the predicted noise close to the sampled
noise ϵ. This objective will also be used during our finetuning
for customization.

B. Base Text-to-Video Generator

Inspired by [7], [11], we adopt the pretrained text-to-image
Stable Diffusion model, equipped with temporal modules to
maintain frame consistency, as the base text-to-video genera-
tor. On the one hand, the prior of Stable Diffusion can help to
generate high-quality frames and diversified content. On the
other hand, in such a generator, the text-to-image modules
and temporal modules are decoupled, and it is natural to
utilize images of the given multiple subjects to finetune the
text-to-image modules, while fixing the temporal modules to
preserve their ability to maintain frame consistency, which
gives an elegant solution to the challenging customized multi-
subject text-to-video generation task. Specifically, we choose
two open-source pretrained text-to-video models, Text2video-
Zero [7], and AnimateDiff [11]. Assuming that we expect to
generate a video of m frames, we need first to prepare m
latent codes {z1T , z2T , · · · , zmT } ∼ N(0, I) and send them to
the Stable Diffusion model to denoise. However, directly de-
noising on the m frames will result in m independent frames,
instead of a video. To tackle the problem, Text2video-Zero
changes the self-attention in Stable Diffusion model to cross-
frame attention to maintain frame consistency. AnimateDiff
trains additional temporal modules on video datasets, which
can be inserted into the Stable Diffusion model to generate
videos. In our VideoDreamer framework, we try to customize
Text2video-Zero and AnimateDiff with the given multiple
subjects, where we can elegantly finetune the text-to-image
Stable Diffusion modules with the images of the subjects. For
simplicity, we denote the text-to-video generation process as:

V id = T2V (P ;ET , ϵθ,I,T ), (4)

where V id is the output video, T2V means the AnimateDiff
or Text2video-Zero generator, P is the prompt, ET is the text
encoder, ϵθ,I,T is the Stable diffusion with motion modules.
Specifically, ϵθ,I,T is composed of two decouples parts, i.e.,
the text-to-image modules ϵθ,I and the motion modules ϵθ,T .
Next, we will show how we finetune the parameters to achieve
customized video generation.

C. Disen-Mix Finetuning

Assume that there are N user-defined subjects {si}Ni=1,
and few images for each subject {xij}Mi

j=1, where xij is
the jth image of subject si and Mi (usually 3∼5) is the
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Text 
Encoder

(𝐸𝑇)
U-Net(𝜖𝜃,𝐼,𝑇)

finetune

𝜖𝜃,𝐼𝑚,𝑇𝑚

𝐸′𝑇

𝜖𝜃,𝐼′

A S1* dog, and a S2* cat are 
skiing in the snow

Motion Customization

Fetch motion modules
𝜖𝜃,𝑇𝑚

𝜖𝜃,𝐼′,𝑇𝑚

Fig. 3. VideoDreamer: Given a pretrained video generator containing a text encoder ET and U-Net with motion modules ϵθ,I,T , in the Disen-Mix Finetuning,
we finetune ET and the image modules ϵθ,I , where the separate-prompt finetuning is to customize each subject independently, while the disentangled finetuning
for mixed data tackles the attribute binding problem. After finetuning, we obtain E′

T and ϵθ,I′ , which can be used to generate customized videos for multiple
subjects. Additionally, we present a motion customization method, where we finetune the whole base text-to-video model on the reference video, and only
use the finetuned motion modules ϵθ,Tm together with image finetuned E′

T and ϵθ,I′ to obtain videos with both customized motion and customized subjects.

number of images used for subject si. Disen-Mix Finetuning
aims to provide the customized parameters ϵθ,I′ to generate
videos for the given subjects, through finetuning the model
on given images of the subject {{xij}Mi

j=1}Ni=1. Specifically,
Disen-Mix Finetuning contains separate-prompt finetuning for
each subject, together with the disentangled finetuning for the
mixed multi-subject data as follows.
Separate-prompt finetuning Similar to previous works [33]–
[35], [37], we will first bind each subject si to a special
separated text prompt Pi, where Pi = “a” + “S∗

i ”+ “catei”,
and catei is the category of subject si, such as “dog”, and S∗

i

is a special token for the subject identity. The binding process
is performed by finetuning the Stable Diffusion with a similar
objective to Eq. 3 as follows:

L1 =

N∑
i=1

(

Mi∑
j=1

Eϵ,t[||ϵ− ϵθ,I(zij,t, t, ET (Pi))||22]), (5)

where zij,t is the noisy latent code of the jth image for subject
si at timestep t. The inner sum of the objective

∑Mi

j=1 Eϵ,t[||ϵ−
ϵθ,I(zij,t, t, ET (Pi))||22] means when we give the text prompt
Pi, the model can denoise all the noisy latents for subject si,
i.e., {zij,t}Mi

j=1 for all t, thus binding Pi to the subject si. The
outer sum means the same operation will be conducted for
each subject, thus finishing the customization for all the given
subjects.

Now, it is natural to directly use the concatenation of all the
prompts Pc = [P1, P2, · · · , PN ] (e.g., “a S∗

1 dog, a S∗
2 cat”)

and the finetuned parameters to generate videos of all the given
subjects. However, this naive strategy will face the attribute
binding and object missing problem as shown in Figure 4,
motivating us to propose the following disentangled finetuning
for the mixed multi-subject data.
Disentangled finetuning for mixed multi-subject data The
reason why the model with separate finetuning fails to simul-
taneously customize multiple subjects is that Pc is a new token

Given Subjects Generated frames with 
Separate-prompt Finetuning

A S1*  dog A S2* cat 

A S1* dog and a S2* cat 

A S1* dog A S2* dog 

A S1* dog and a S2* dog 

Expected Results

Fig. 4. Generated video frames only using separate-prompt finetuning, and
the results are with 2 different random seeds. Only with the separate-prompt
finetuning, the attributes of different subjects are mixed together. Sometimes
one subject is missing.

to the model, which is not seen by the model during finetuning.
Relying on the prior of the Stable Diffusion to compose the
separately-finetuned subjects into one image will inherit its
attribute binding and missing object problem [35], [53]. To
provide further guidance to multi-subject generation, we mix
the images of different subjects into one image as follows,

xmix = [x1m1
;x2m2

; · · · ;xNmN
], (6)

where ximi
is a randomly sampled image for subject si,

and [; ] is the concatenation operation. By sampling differ-
ent images for each subject, we can obtain different mixed
images. Consequently, we obtain a small dataset Dmix =
{xmix,j}Mmix

j=1 of Mmix images, where each image contains
all the given subjects, which can be bind to the mixed prompt
Pc. However, simply binding Pc with the Dmix with the
previous finetuning strategy will make the generated images
using Pc suffer from artifacts, e.g., the generated images will
contain stitches introduced by the concatenation. To alleviate
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the influence of artifacts, we propose a finetuning strategy with
disentangled embeddings [54], [55] inspired by the single-
subject customization work [37].

Instead of directly using Pc as the condition to denoise the
images in Dmix, we introduce the disentangled image-specific
condition, shared stitch condition, and shared subject-identity
condition Pc together to denoise. The idea behind the design is
that each image in Dmix not only contains multiple subjects,
but also artificial stitches, and image-specific information such
as the background and the subject pose. To describe each
image, we first extend Pc with a stitch prompt PN =“a picture
is divided into several regions” and obtain P ′

c = [PN , Pc],
e.g., “a picture is divided into several regions, a S∗

1 boy, a S∗
2

dog, and a S∗
3 cat”. Then, we can obtain the textual condition

embedding ET (P
′
c) through the CLIP text encoder ET (·). To

further obtain the image-specific embedding, we use a CLIP
visual encoder followed by an adapter as follows,

fj = Adapter(EI(xmix,j)), j = 1, · · · ,Mmix, (7)

where EI(·) is the pretrained CLIP visual encoder, and
Adapter(·) is an MLP adapter with skip connection. With
the textual and image-specific embedding, we can denoise the
images of mixed data as follows,

L2 =

Mmix∑
j=1

Eϵ,t[||ϵ− ϵθ,I(zmix,j,t, t, ET (P
′
c) + fj)||22], (8)

where for the noisy latent code zmix,j,t of each mixed image
at timestep t, we use the sum of the textual embedding and
the visual embedding to denoise it. With the extended prompt
and the visual embedding, Pc can focus on the information
about the subjects that it describes, while letting the stitch
prompt PN and the visual embedding fj denoise the stitches
and subject-irrelevant information. Considering that fj is an
image-specific feature that may capture all information of
image xmix,j , causing ET (P

′
c) to contain insufficient subject

information, to avoid this problem, we adopt the weak denois-
ing objective as [37]:

L3 = λ

Mmix∑
j=1

Eϵ,t[||ϵ− ϵθ,I(zmix,j,t, t, ET (P
′
c))||22], (9)

where λ < 1 is a hyper-parameter set to 0.01 as given in [37].
The weak denoising objective plays as a regularizer to make
ET (P

′
c) denoise the mixed image, preventing it from losing

subject visual details, but λ should not be too large, or ET (P
′
c)

may overfit the subject-irrelevant information.
In sum, finetuning the Stable Diffusion model on the fol-

lowing objective, Pc can be used as the prompt for the given
multiple subjects while being not influenced by the artifacts.

L = L1 + L2 + L3. (10)

D. Optional: Human-in-the-Loop Re-finetuning

To further improve the multi-subject generation perfor-
mance, we present the Human-in-the-Loop Re-finetuning strat-
egy(HLR). Specifically, we will first use the Disen-Mix Fine-
tuning to obtain a finetuned Stable Diffusion model ϵθ,I1 , and

then use Pc and some related prompts, e.g., Pc + “in the
ocean” or “in the flowers”, to generate some pictures about
the given multiple subjects. Then, we can pick few satisfying
pictures from the generated pictures by humans. After that,
we can re-finetune the Stable diffusion model using Eq. 10 by
replacing the original mixed images with the picked images.
Note that here we change P ′

c in Eq. 9 and Eq. 8 to Pc, because
there are no stitches in these picked images and we do not
need the extended prompt “a picture is divided into several
regions” anymore. The re-finetuned model will bring better
performance for some hard cases. In our main experiments,
we do not apply HLR for comparison, but we conduct an
ablation about its effectiveness.

E. Parameters to Finetune and Inference

The parameters to finetune contain the mentioned adapter.
Additionally, we apply LoRA [56] to finetune the U-Net
and text encoder. The finetuned text encoder and U-Net
are denoted as E′

T and ϵθ,I′ . To generate videos about the
customized multiple subjects, we combine Pc with many
other prompts, e.g., “surfing in the ocean”, to obtain Pc,new.
Finally, we can generate new videos using Eq. 4 as V id =
T2V (Pc,new;E

′
T , ϵθ,I′,T ), where we use the finetuned image

modules, text encoder, Pc,new together with the temporal
modules to generate customized videos for multiple subjects.

F. Motion Customization

Besides customizing the given multiple subjects, we also
present a disentangled finetuning strategy for motion cus-
tomization, which enables users to generate videos of both
customized subjects and motions with VideoDreamer. Specifi-
cally, given a reference video Vm, and its text prompt Pm (e.g.,
“a man is skiing in the snow”). We use the text-video pair to
finetune the base text-to-video generator and we will obtain
the finetuned model ϵθ,Im,Tm

, where the image modules and
motion modules are all finetuned. Then, it is a natural idea
to apply previous LoRA parameters to the ϵθ,Im,Tm for both
subject and motion customization (we call this method Naive-
motion in the experiments). However, we find that ϵθ,Im,Tm

easily overfits the appearance of the reference video and it is
hard to generate the customized subjects. Therefore, inspired
by the idea of image-motion disentanglement, as shown in
Figure 3, we abandon the image modules ϵθ,Im that mainly
involve the subject appearance from ϵθ,Im,Tm

, and only use
the motion modules ϵθ,Tm

, and combine it with ϵθ,I′ to obtain
ϵθ,I′,Tm

. Finally, with E′
T , ϵθ,I′,Tm

, and prompt Pc,m(“a S∗
1

dog, a S∗
2 cat” are skiing in the snow”), we can achieve both

subject and motion customization.

IV. EXPERIMENTS

A. Experimental Settings

Dataset. Since this is the first work for customized multi-
subject text-to-video generation, we propose the MultiStu-
dioBench dataset. The dataset contains 25 subjects, including
personal belongings, pets, and some animation characters,
and there are few images for each subject. Images in the
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Fig. 5. Part of the MultiStudioBench dataset images.

Fig. 6. Part of the evaluation prompts for two-subject combinations.

dataset are from previous works [33], [35] or collected by
the authors. We provide an overview of part of the datasets in
Figure 5, where we can see that the images are very diverse,
covering different categories and styles. Among the collected
subjects, we selected 15 combinations for customization in
total, including 12 2-subject combinations (e.g., a cat and a
dog) and 3 3-subject combinations (e.g., a cat, a dog, and
a toy). We also provide 30 textual prompts used for the
generation, where the textual prompts are designed to generate
new actions of subjects (e.g., “playing chess, sleeping”), new
backgrounds (e.g., “under the Eiffel tower”), etc. We provide
part of the evaluation prompts for two-subject combinations
in Figure 6. For a more robust evaluation, we generate videos
with 4 random seeds for each subject combination and each
prompt, totaling 1800 videos.
Baselines. There is no existing work for customized multi-
subject text-to-video generation to directly compare with.
However, considering that our work is built on finetuning the
base video generator (Text2video-zero/AnimateDiff) in a cus-
tomized way, we can replace the Disen-Mix finetuning strategy
in VideoDreamer with some customized finetuning strategies.
Specifically, we adopt the DreamBooth [33], Customfuison
[35], and SVDiff [36] for customization, respectively obtain
the DB+AD/T2V, Custom+AD/T2V and SVDiff+AD/T2V
baselines, where AD and T2V are short for AnimateDiff and
Text2video-Zero, respectively.
Implementation Details. Our code is based on Diffusers [57],
where we use the pretrained Stable Diffusion 2-1 for
Text2video-Zero, and pretrained Stable Diffusion 1-5 for Ani-
mateDiff. During finetuning, we adopt the AdamW [58] opti-
mizer, with the text encoder learning rate 1e−5. The learning

rate for other parameters is 5e−5 for 2-subject customization
and 1e − 4 for 3-subject customization. During inference,
the video is 8-frame for Text2video-Zero and 16-frame for
AnimateDiff, with resolution 512 × 512. For Text2video-
Zero, we adopt the DPMSolver as the video-generator sampler,
where we set T = 40, T ′ = 38, while other hyper-parameters
as default in [57]. For AnimateDiff, we adopt the default
scheduler and hyper-parameters for inference as [57].
Metrics. MultiStudioBench evaluates the generated videos
from 4 aspects. (i) Subject fidelity: generated videos should
contain the given customized subjects. For the frames in the
generated video, we first use the pretrained detection model
FasterRCNN-MobileNet-V3-large [59] to detect the subjects,
and calculate the DINO score between the detected subjects
and the given subjects, where the DINO score is the DINO
image feature cosine similarity proposed by [33]. (ii) Textual
fidelity: the generated videos should be consistent with the
given textual prompt. We use the average CLIP-T score [33],
[34] between each frame and the given textual prompt to eval-
uate the textual fidelity of the generated video. (iii) Temporal
Consistency: We use the average CLIP image cosine similarity
between all pairs of video frames to measure the temporal
consistency of the video as in [27]. (iv) Stitch Score: This
metric is used to distinguish the methods like SVDiff that may
introduce the artificial stitches. We use OpenCV [60] tools to
detect whether each frame has artificial stitches. If the stitches
are detected in the frame, the stitch score of the frame is 1.0, or
the score is 0.0. We finally report the average stitch score on all
the frames. A lower stitch score indicates better performance.

B. Main Results

a) Qualitative results: The qualitative results are pre-
sented in Figure 7. We can see DB and Custom suffer from
attribute binding problems, e.g., the generated two subjects
look similar. Additionally, when the base model is Animate-
Diff, some subjects are missing, which causes low temporal
consistency. SVDiff suffers from artifacts. In contrast, our
VideoDreamer can generate temporally consistent videos that
faithfully preserve the subject identity while alleviating the
impact of artifacts.

b) Quantitative results: The overall quantitative results
are reported in Table I. From the results, we can observe that:
(i) VideoDreamer achieves a much higher DINO score than all
the baselines, indicating that it has the best subject fidelity and
the best customization ability. (ii) Although VideoDreamer
and SVDiff are finetuned on the mixed data, SVDiff suffers
from overfitting the mixed data, thus having a low CLIP-T
score on both AD and T2V base models. In contrast,
the disentangled tuning strategy avoids VideoDreamer
overfitting the identity-irrelevant information in the mixed
data, achieving comparable text fidelity, i.e., CLIP-T score,
to DB and Custom. (iii) The temporal consistency of all the
methods on T2V base model is similar, while on the AD
base model, VideoDreamer and SVDiff achieve clearly better
temporal consistency than other methods, indicating their
ability to stably customize multiple subjects in each frame,
thus better maintaining temporal consistency. (iv) SVDiff has
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TABLE I
QUANTITATIVE COMPARISON BETWEEN VIDEODREAMER AND BASELINES. 2-SBJ AND 3-SBJ RESPECTIVELY INDICATE THE AVERAGE PERFORMANCE ON
2-SUBJECT CUSTOMIZATION AND 3-SUBJECT CUSTOMIZATION. AVG. INDICATES THE AVERAGE PERFORMANCE ON ALL THE DATA. THE BEST AVERAGE
PERFORMANCE IS IN BOLD AND SECOND IS UNDERLINED. ↑ INDICATES HIGHER METRIC VALUE REPRESENTS BETTER PERFORMANCE AND VICE VERSA.

DINO↑ CLIP-T↑ Temporal Consistency↑ Stitch Score↓
2-sbj 3-sbj Avg. 2-sbj 3-sbj Avg. 2-sbj 3-sbj Avg. 2-sbj 3-sbj Avg.

DB+AD 0.362 0.315 0.353 0.299 0.305 0.300 0.913 0.919 0.914 0.074 0.084 0.076
Custom+AD 0.359 0.310 0.349 0.308 0.309 0.309 0.896 0.905 0.898 0.125 0.187 0.137
SVDiff+AD 0.377 0.260 0.353 0.281 0.296 0.284 0.928 0.954 0.934 0.631 0.685 0.642
VideoDreamer(AD) 0.408 0.335 0.394 0.300 0.303 0.301 0.937 0.933 0.936 0.107 0.183 0.122

DB+T2V 0.454 0.408 0.445 0.315 0.317 0.316 0.941 0.941 0.941 0.032 0.037 0.033
Custom+T2V 0.461 0.401 0.449 0.314 0.309 0.313 0.945 0.948 0.946 0.111 0.133 0.115
SVDiff+T2V 0.461 0.305 0.430 0.285 0.285 0.285 0.942 0.926 0.939 0.237 0.768 0.343
VideoDreamer(T2V) 0.493 0.428 0.480 0.313 0.314 0.313 0.946 0.939 0.944 0.034 0.178 0.062

Given Subjects Generated Videos

Subject 1: A S1* cat 

Subject 2: A S2* cat 

Subject 1: A S1* dog 

Subject 2: A S2* dog 

DB+T2V Custom+T2V

SVDiff+T2V VideoDreamer

A S1* dog and a S2* dog are surfing in the sea.

DB+AD Custom+AD

SVDiff+AD VideoDreamer

A S1* cat and a S2* cat are surfing in the sea.

Fig. 7. Qualitative comparison between VideoDreamer and baselines. Baselines suffer from attribute binding, missing subjects problems or artifacts.
VideoDreamer can faithfully generate videos that contain the given subjects and conform to the textual prompts.

the highest stitch score and suffers from artifacts. Custom
also has a high stitch score because it applies image-crop
augmentation during finetuning, which introduces stitches.
Our VideoDreamer and DB have a low stitch score, indicating
the effectiveness of our Disen-Mix finetuning strategy. In
sum, our proposed VideoDreamer has the best ability for
customization, while also keeping a high textual fidelity,
temporal consistency, and fewer artifacts.

C. Ablation Study
a) Human-in-the-Loop Re-finetuning: As shown in Ta-

ble I, the stitch score of VideoDreamer will increase when
facing 3 subjects. To tackle this problem, we use the aforemen-
tioned Human-in-the-Loop Re-finetuning(HLR). The quanti-
tative results are given in Table II, and we can see that the
proposed HLR largely reduces the impact of the stitches. The
corresponding qualitative comparisons are given in Figure 8,
further demonstrating the effectiveness of the HLR.

TABLE II
THE EFFECTIVENESS OF THE PROPOSED HUMAN-IN-THE-LOOP

RE-FINETUNING STRATEGY(HLR) ON THE 3-SUBJECT SCENARIO, WHERE
THE BASE MODEL IS T2V. TEMPORAL CONSISTENCY AND STITCH SCORE

ARE ABBREVIATED AS TEMP CONSIST AND STIT SCORE.

VideoDreamer VideoDreamer+HLR
DINO↑ 0.428 0.440
CLIP-T↑ 0.314 0.324
Temp Consist↑ 0.939 0.937
Stit Score↓ 0.178 0.045

b) Disentangled embedding ablation: In VideoDreamer
finetuning, besides the shared subject-identity condition Pc, we
also use the shared stitch condition PN =“a picture is divided
into several regions”, and the image-specific embedding fj ,
to avoid overfitting the subject-irrelevant information. We
validate their effectiveness in Table IV on the T2V base model,
where we randomly choose 4 2-subject combinations and
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Given Subjects

A S1* dog 

A S2* dog  

A S3* dog  

A S1* dog, a S2* dog, a S3* dog are walking on the Great Wall.  

A S1* dog, a S2* dog, a S3* dog are walking in the outer space.  

w/o HLR with HLR

Fig. 8. Qualitative results when VideoDreamer with and without HLR to customize 3 subjects.

Reference Videos

Given 
Subjects

A man is skiing in the snow A bear is playing the guitar in the snow

Video
Dreamer

A 𝑆1
∗ dog and a 𝑆2

∗ cat are skiing in the 
snow

A 𝑆1
∗ dog and a 𝑆2

∗ cat are playing the guitar 
in the snow

Naive
Motion

Fig. 9. Joint subject and motion customization results on AD base model.

report the average performance. From the results, we can see
that both PN and fj can help to reduce the artificial stitches.
Additionally, using the image-specific feature fj can prevent
the model from overfitting the given images, improving the
textual fidelity(CLIP-T), which is consistent with the results
in [37]. Corresponding qualitative comparisons are presented
in Fig.10. In the first example, from the results of w/o
PN in “surfing in the sea”, we can see that without the
stitch prompt PN , the generated videos may contain artificial
stitches, showing the effectiveness of the stitch prompt to
remove the artifacts. From the results of w/o fj , we can see
that without fj , the generated videos may overfit some subject-
irrelevant information, e.g., the stage of the given image
in subject 1, and ignore the textual prompt, e.g., “playing
the guitar”. Therefore, the disentangled embeddings during
training help to alleviate the impact of artifacts and improve
the textual fidelity,

c) Weak denoising loss: To optimize the model, we
introduce the weak denoising loss L3, we present the ablation
about it in Table III on the four subject combinations on
Text2video-Zero as previous ablations. Without L3(w/o L3) to
keep P ′

c containing mixed data information, the DINO score
will decrease, which means the generated subject will be less
similar to the given subjects, which is consistent with the
results in [37].

d) Joint subject and motion customization: We provide
the motion customization results for multiple subjects in

TABLE III
ABLATIONS ABOUT THE WEAK DENOISING LOSS.

DINO CLIP-T Temp Consist Stit Score
ours 0.501 0.306 0.943 0.036
w/o L3 0.493 0.305 0.944 0.032

Figure 9. The results show that our proposed motion cus-
tomization method can preserve the appearance of each subject
and inherit the motion of the reference video, but the naive
baseline overfits the appearance of the reference videos.

TABLE IV
ABLATIONS ABOUT THE DISENTANGLED EMBEDDINGS.

DINO↑ CLIP-T↑ Temp Consist↑ Stit Score↓
ours 0.501 0.306 0.943 0.036
w/o fj 0.486 0.299 0.936 0.125
w/o PN 0.504 0.305 0.942 0.068
w/o both 0.476 0.296 0.938 0.287

D. More results

a) Evaluation on More Comprehensive Metrics: We
also use the motion smoothness(abbreviated as motion),
aesthetic quaility(aesthetic), and imaging quality(imaging), 3
metrics from [61] to evaluate different methods more com-
prehensively, where motion smoothness evaluates whether the
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Subject 1: A S1* dog 

Subject 2: A S2* dog 

A S1* dog and a S2* dog are surfing in the sea.

V
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e
o
D
re
am

e
r

A S1* dog and a S2* dog are playing the guitar in the Times Square.

w
/o

 𝑓
𝑗

w
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 𝑃
𝑁

w
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o
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Fig. 10. Qualitative results about the disentangled embedding ablation study.

generated video has a smooth motion, aesthetic quality and
imaging quality evaluates the image quality of the video
frames, larger values on the 3 metrics mean better perfor-
mance. Additionally, we use human assessment to evaluate
the quality of the generated videos. Specifically, we asked 50
users of different occupations to rank the videos generated
by different methods, by jointly considering whether the
generated videos have the same subjects as the given images,
whether they are consistent with the text prompts and whether
the video is temporally consistent and natural. For each user,
we randomly sample 10 unique prompts, and we report the
average rank, a smaller rank value(closer to 1) indicates better
performance. The performance of different methods on these 4
new metrics is shown in Table V. The results further show that
our proposed VideoDreamer has superior generation ability
than existing finetuning methods.

TABLE V
EVALUATING DIFFERENT METHODS ON MORE METRICS.

DB+AD Custom+AD SVDiff+AD VideoDreamer
motion 0.928 0.901 0.924 0.943
aesthetic 0.540 0.572 0.455 0.588
imaging 0.728 0.726 0.726 0.735
Human 2.966 2.415 3.082 1.537

b) Subject Interaction Generation: Since we stitch the
resized images to an image that contains multiple subjects
as guidance for multi-subject generation, we want to explore
whether VideoDreamer can still generate images where the
subjects have other interactions instead of in different regions.
As shown in Figure 11, thanks to the disentangled finetuning
strategy, our method does not overfit the stitched images and
can generate interactions such as “hold” and “gives a hug”.

c) More qualitative results: Besides the previously given
qualitative examples, we provide more generated results on
different customized subject customizations, where we put
these subjects in different scenarios and make them conduct
diverse actions. We provide the results in Figure 12.

a 𝑆!∗ cat gives a hug to a 𝑆#∗ dog. 

a 𝑆!∗ girl holds a 𝑆#∗ dog. 

Fig. 11. Generating subjects with more interactions.

d) Failure cases: Although the proposed method is ef-
fective at generating videos for multiple customized subjects,
we encountered some failure cases during the experiments.
As shown in the first example in Fig. 13, we try to apply
our proposed method to 4-subject customization, but we
find that in the generated videos, the first dog is missing.
This phenomenon indicates that our although our proposed
method works well for 2- or 3-subject combination, but its
performance will drop when increasing the subject number.
Additionally, our method faces the challenge of assigning
specific attributes to each customized subject. As shown in
the second example of Figure 13, when we expect the dog to
wear a red hat while the second cat to play football, both of
them wear a red hat and no one plays the football. We hope
future works can solve these problems.

V. LIMITATION AND FUTURE WORK

Since this is the first attempt at customized multi-subject
text-to-video generation, this work has some limitations. The
first limitation is the evaluation benchmark. Although the
MultiStudioBench evaluates the generation quality from com-
prehensive aspects, the data it applies is not large-scale and
cannot cover all the varieties of subjects in the real world. In
the future, we will enrich the benchmark with more diversified
data. As for the method, the motion customization strategy
currently can only be applied to the video generation model
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A S1* bear, and a S2* dog are driving a car in the desert.  

A S1* bear, and a S2* dog are playing chess in the Times Square.  

A S1* bear, and a S2* robot are dancing under the starry sky.

A S1* bear, and a S2* robot are playing under the sakura.

A S1* bear, a S2* dog, and a S3* cat are walking on the beach.

A S1* bear, a S2* dog, and a S3* cat are skiing on the mountain.

Fig. 12. More generated cases with VideoDreamer.

The four subjects are playing in the yard.

The dog is in a red hat, the cat is playing the football.

Fig. 13. Failure generated cases.

with decoupled spatial and temporal modules. Developing a
general motion-customization finetuning approach could be
an interesting future work. Additionally, we use [7], [11] as
the base video generator, where the single prompt is used
to control all frames, making it hard to create videos with a
dynamic background or multiple events, e.g., “from the forest
to the ocean”, and “first play basketball and then dance”. How
to tackle this problem is also worth exploring in the future.

VI. CONCLUSION

In this paper, we present the first attempt at customized
multi-subject text-to-video generation, and propose Video-
Dreamer, which can generate temporally consistent text-guided

videos that faithfully preserve the subject identity, with the
proposed Disen-Mix and HLR finetuning strategy. Extensive
experiments on the proposed MultiStudioBench benchmark
demonstrate that VideoDreamer has a remarkable ability in
generating videos with new content for the given customized
multiple subjects. Additionally, we provide an effective way
to provide customized motion for the subjects. We believe
this work takes a further step towards a more practical-to-
used video generation system, and will inspire a lot of future
works both in pretrained text-to-video models and finetuning
methods.
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